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Abstract. Electric-field-dependent free energy of the exactly solvable asymmetricN -state vertex
model (i.e. in an arbitrary vertical and an arbitrary horizontal electric fieldv andh) in the low-
temperature antiferroelectric phase is obtained in the form of the expansion in terms of small but
nonzero polarizationp. Exact mapping onto a microscopic surface model (solid-on-solid (SOS)
model) is employed to study the vicinal-surface free energy below the roughening temperatureTR
which determines the equilibrium crystal shape (ECS) near the facet edge of a crystal.

The obtained expansion of the free energy is of the well-established Gruber–Mullins–
Pokrovsky–Talapov (GMPT) type:f (p, h) = f (0, h) + a(h)p + b(h)p3 + O(p4). It is found that
the coefficientsa(h) andb(h) are identical with those of the asymmetric six-vertex model. Based
on this expansion, in cooperation with the Andreev construction of the ECS, universal properties
are verifiedalong the whole facet contour. First, directly from the GMPT-type expansion, the
critical exponents governing the rounding of the crystal facet are obtained; the exponent is3

2 in all
directionexceptthe tangential one in which case it is 3. Second, the universal relation between
a(h) andb(h) is verified, leading to the universal Gaussian curvature jump at the facet edge and a
universal relation between the critical amplitudes of the ECS profiles of the vicinal surface.

1. Introduction

Exact solution of the two-dimensional (2D) classical statistical systems has a long history [1,2].
Most of the solutions concern 2D models without an external electric field. Exact solvability
of models in an electric field is not a trivial problem. In 1967 Yang [3] and Sutherlandet al [4]
solved a general six-vertex model (called the asymmetric six-vertex model) when arbitrary
horizontal and vertical electric fields,h andv, are present. They obtained the phase diagram
as well as the exact expression of the free energy for zero polarization. Later, the solvability
condition (a commutation relation: the Yang–Baxter relation) between the transfer matrices
of the asymmetricN -state vertex model has been found [5]. In this paper we obtain the exact
expansion of the free energy of the asymmetricN -state vertex model in the low-temperature
antiferroelectric phase for small polarization as a generalization of previous works [6–9].
Comparison among these works and the present one is listed in table 1. Asymmetric models
should be used to study the properties of models in an arbitrary direction. Expanding the
free energy up to the third order gives the small-polarization properties of the vertex models.
This calculation for the asymmetric model was first done in [9]. ([7] refers to the expansion
up to the first order.) We verify that the same universal properties hold for the asymmetric
N -state vertex model as those for the asymmetric six-vertex model [9]. We further find that
the higher-order terms of the expansion exhibit a non-universal property.

Among applications of 2D classical statistical systems is analysis of the equilibrium crystal
shape (ECS). As a pioneering work of exact analysis of the ECS, van Beijeren [10] mapped the
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Table 1. List of the works on expansion of the free energy of vertex models for nonzero polarization.

Six-vertex (two-state vertex) model N -state vertex model

Symmetric [6] [8, 12]
Asymmetric [7, 9] this work

six vertex model onto the microscopic surface model (body-centred solid-on-solid (BCSOS)
model) to discuss the roughening transition exactly. By virtue of this correspondence the
asymmetric six vertex model has played a major role in studying properties of the roughening
transition atTR as well as the thermal evolution of facet shapes of a crystal for temperatures
T < TR [7,10,11]. Exact mapping onto a surface model is also possible for theN -state vertex
model [5]. We perform this mapping to study the surface free energy of the corresponding
generalized SOS model exactly.

Below the roughening temperatureTR, the ECS near the facet edge is viewed as a vicinal
surface (i.e. a crystal surface with small average gradient). It was believed that the vicinal
surface forT < TR belongs to the Gruber–Mullins–Pokrovsky–Talapov (GMPT) universality
class [13] and that the vicinal-surface free energyf (p) as a function of surface gradientp
(∼polarization of the vertex model) takes the well-established form of the expansion [13,14],
f (p) = f (0)+ap+bp3+O(p4), which determines the ECS near the facet edge of a crystal via
the Wulff construction [15]. Some universal properties are associated with this vicinal-surface
free energy. The rounding off of a crystal facet is governed by two kinds of the universal critical
exponents32 and 3 [16,18]; the ECS behaves asZ ∼ (1X)3/2 in a ‘normal’ direction [6,11,17]
and asZ ∼ (1Y)3 in the tangential direction [18]. (We have chosen theZ-axis to be facet
normal, and1X to be the ‘normal’ distance (perpendicular to the facet contour).) The universal
relation holds between the coefficientsa andb [19]. This leads to the universal relation between
the critical amplitudes of the normal and the tangential ECS profile near the facet edge [16],
and also to the universal Gaussian curvature jump at the facet edge [9,19,20], which thus has
a different physical origin [21] from that of the universal curvature jump atTR [11].

Andreev [22] showed that the surface free energy as a function of fields directly gives the
ECS. In this paper we verify the GMPT-type expansion as well as the universal properties along
the whole facet contour, based on the field-dependent vicinal-surface free energyf (p, h) of
our SOS model. The expansion off (p, h) up to the third order isN -independent, as is stated
above. The result is of special interest since another calculation on this SOS model shows that
the curvature jump atTR isN -dependent [12].

2. Free energy of the asymmetricN -state vertex model

The exactly-solvableN -state vertex model (spin-s model) is an extension of the six vertex
model [5]. The edge valuables of a vertex take any one of{−s, . . . , s} (N = 2s + 1)
under the ‘charge conservation’ condition (figure 1). In this paper we concentrate on the
low-temperature antiferroelectric phase (hyperbolic regime for the Boltzmann weights). We
employ the Boltzmann weights with the normalizationXssss (u) =

∏N−1
l=1 sinh(lλ−u) and with

the crossing symmetryXij

kl (λ−u) = X−kil−j (u). Introducing a certain gauge transformation [5],

we can construct the Boltzmann weightsX̂ijkl (u) of the asymmetric model (in a horizontal
electric fieldh) from those of the symmetric oneXijkl (u):

X̂
ij

kl (u) = H(j+k)/2X
ij

kl (u) H = exp(2βh) (1)

i + j = k + l i, j, k, l = −s, . . . , s. (2)
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Figure 1. The Boltzmann weightXijkl (u). The nonvanishing weights are allowed for
the vertex configuration under the ‘charge conservation’ conditioni + j = k + l.

We should note that the Boltzmann weightsX̂ijkl (u) themselves do not satisfy the
factorization (Yang–Baxter) equation, but that there exists a commutation relation associated
with the transfer matrices of the model which ensure the solvability of the asymmetric model.

Diagonalization of the transfer matrix of the asymmetricN -state vertex model is worked
out by using the algebraic Bethe ansatz method [23,24]. The resulting Bethe ansatz equation
is

exp(ipjL) = HL
n∏
l=1

exp(i2(pj , pl)) 16 j 6 n (3)

where

eip = e2sλ − e−iα

e2sλ−iα − 1
(4)

2(pj , pl) = 2 arctan

[
cothλ tan

(
α − β

2

)]
. (5)

In the thermodynamic limit we write the Bethe ansatz integral equation for the continuous root
densityR(α):

R(α) +
∫
C

K(α − β)R(β) dβ = ξ(α)

π(1− y) =
∫
C

R(β) dβ
(6)

where

ξ(α) =
2s∑
k=1

sinh(2k − 1)λ

cosh(2k − 1)λ− cosα
(7)

K(α) = sinh 4sλ

cosh 4sλ− cosα
+ 2

2s−1∑
k=1

sinh 2kλ

cosh 2kλ− cosα
. (8)

The phase shift function2(x) and the kernelK(x) are related to each other asK(x) =
d2(x)/dx, and the vertical polarizationy is defined by

y = lim
L→∞

2sz

L
= lim

L→∞
L− 2n

L
. (9)

The parameterλ scales the temperature. The integration pathC is, unlike the symmetric case,
shifted from the real axis to the interval [4,7]

C : [−a + ib, a + ib]. (10)



5602 R Sato and Y Akutsu

Note thata andb depend implicitly on the two variablesy andh, and vice versa. In terms of
the new variableu = α − ib (v = β − ib), the equations (6) are rewritten (06 a(y, h) 6 π )

R(u, b) +
∫ a

−a
K(u− v)R(v, b)dv = ξ(u, b)

π(1− y) =
∫ a

−a
R(u, b)du

(11)

with the normalization

p0(a, b)−
∫ a

−a
θ(a − v)R(v, b)dv = π

2
[1− y(a, b)] − i ln H(a, b) (12)

wherep0(a, b) is a (complex) wavenumber. Once the solutionR(α) is known, the per-site
field-dependent free energy as a function of vertical polarization,f (y, h), is given by

−βf (y, h) ≡ g(y, h)
= −1

2
lnH + ln X̂ssss (u) +

1

π

∫ a

−a
8(u, b)R(u, b)du (13)

with (ϕ = λ + φ0 − b, φ0 < b < λ)

8(u, b) =
∞∑
−∞

8̂n(b)e
inu (14)

8̂n(b) =
 2s(1 + iu) (n = 0)

1

n
e−2sλ|n| sinh 2sλn

sinhλn
(n 6= 0)

(15)

where the parameterφ0 is defined by

eφ0 = 1 + eλη

eλ + η
06 φ0 6 λ. (16)

For small vertical polarizationy we obtain the free energy in its expansion form in terms
of y:

g(y, h) = g(0, h) +
∞∑
n=1

gn(h)

n!
yn. (17)

Calculations can be performed in a similar way to that of Lieb and Wu [6], but the asymmetry
of the Boltzmann weights makes the analysis rather complicated although straightforward. To
obtain the expansion (17), we need the derivatives of various quantities with respect toy at
y = 0. Define

R(j)(u, b) ≡ ∂jR(u, b)

∂yj

∣∣∣∣
h:f ixed,y=0

. (18)

We denote the partial derivatives of a functionF with respect tot at y = 0 by Ft , Ftt , and
so on.R(0)(u, b) andR(0)b (u, b) have been obtained in [7]. We expand (11) in terms ofy and
obtainR(j)(u, b)’s recursively. After some calculations, we obtain

R(1)(u, b) = R(1)(u) = R(1)sym(u)
R(2)(u, b) = R(0)b (u, b)byy
R(3)(u, b) = R(3)sym(u, b) + 2iR(1)(u)′byy +R(0)b (u, b)byyy

(19)

where the quantities with subscriptsym stands for those for the symmetric case which are
given in [8]. Note that the solutions (19) are of the same form of the functional relations as



AsymmetricN -state vertex model 5603

those in theN = 2 case (six-vertex model), but are actuallyN -dependent. In the derivation
of (19) we have used the following relations aty = 0 (a = π) which are derived through (11)
and (12):

Ȟ ≡ lnH = 2βh = −b − 2
∞∑
n=1

(−1)n

n

sinhbn

coshλn

Ȟa = 0 Ȟaa = 4sR(0)b (π, b) Ȟaaa = R(1)(π)

sπ
Ȟaa

bȞ = −
1

2R(0)(π, b)
bȞȞ = −

Ȟbb

Ȟb
b2
Ȟ

by = 0 byy = −
a2
y

Ȟb
Ȟaa byyy = 1

4sR(0)(π, b)
(3Ȟaaayayy + Ȟaaaa

3
y).

(20)

Noting thatbyy = byyy = 0 for h = 0 (b = 0), we observe in (19) thatR(j)(u, b) (j 6 3)
reduce to the results for the symmetric model [8].

Substituting the solutions (19) into (13), after a lengthy calculation using (20), we obtain
the expansion (17). It is convenient to scale the polarization by 2s:

(p, q) = (2sy, 2sx) f (y, h)→ f̂ (p, h) (21)

(x is the horizontal polarization) in association with the Legendre transformation (f̂ (p, q) ≡
f (p/2s, q/2s))

f̂ (p, q) = f̂ (p, h) + hq (22)

with

q = −∂f̂ (p, h)
∂h

∣∣∣∣
p

. (23)

We then finally have

−βf̂ (p, h) ≡ ĝ(p, h) ≡ g(p/2s, h)

= ĝ(0, h) +
∞∑
n=1

ĝn(h)

n!
pn

= ĝ(0, h) + ĝ1(h)p + 1
6 ĝ3(h)p

3 + O(p4) (24)

with
ĝ1(h) = −4(ϕ)
ĝ3(h) =

[
π

R(0)(π, b)

]2 [
4′′(ϕ) +

Rb(π, b)

R(0)(π, b)
4′(ϕ)

]
(25)

where the function4(x) is defined by

4(x) = cosh−1

[
nd

(
K(k)

π
x

∣∣∣∣1− k)] (> 0) (26)

whereK(k) denotes the complete elliptic integral of the first kind with modulusk, and nd
is the Jacobi elliptic function. The result verifies the GMPT-type expansion without thep2

term [13, 14] for the asymmetricN -state vertex model. We further derive a simple relation
betweenĝ1(h) andĝ3(h) as follows. Since

d2

dh2
(4(ϕ)) = (4′′(ϕ)(bh)2 −4′(ϕ)bhh)

=
[
4′′(ϕ) +

Rb(π, b)

R(0)(π, b)
4′(ϕ)

]
(bh)

2 (27)
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with

bh = − β

R(0)(π, b)
(28)

we obtain

ĝ3(h) = −π
2

β2
· ĝ′′1(h). (29)

We find, as for the expansion up to the third order, that the results (24) and (29) areN -
independent and are given in [9]. This is understood from the fact that theN -state vertex
model is a special case of the ‘Z-invariant’ inhomogeneous six vertex model with suitable
boundary conditions [2, 8]. The present calculation shows that this property holds when an
arbitrary electric field is present.

We carry out a further calculation of the expansion to obtain higher-order terms than the
third one. In what follows in this section only we deal with the symmetricN -state model for
simplicity. The Bethe ansatz integral equation is given in [8] and can be obtained by letting
b = 0 (i.e. h = 0) in (13) (withφ0 = −21u). The free energŷg(p, h) in (24) is now a
function only ofp (andu). A calculation up to the fifth order gives

ĝ4 = ĝ4(0) = − 16π2

R(0)(π)3
8(s)4′′(λ− 21u) (30)

ĝ5 = ĝ5(0) = 240π2

R(0)(π)4
82(s)4′′(λ− 21u) +

[
π

R(0)(π)

]4

×
[
−4R(0)

′′
(π)

R(0)(π)
4′′(λ− 21u) +4(4)(λ− 21u)

]
(31)

where the function8(s) is defined by

8(s) =
∞∑
n=1

(
1− e2sλn

2 sinh(2sλn)
tanh(λn)

)
. (32)

We find that thep4 term does not vanish, whereas thep2 terms do. This distinguishes the
model from the free fermion model. Recalling that the higher-order terms of the free energy
reflect contributions due to the higher-order (high-energy) processes of the interaction between
the multi-valued variables (multipoles) (or, steps in the TSK picture (see section 3)), the result
shows that the difference between theN -state vertex model and the free fermion model appears
in the forth and higher orders of the free energy. We also remark thatĝ4 andĝ5 are definitely
s-dependent, while the coefficientŝgn for n 6 3 ares-independent, as is shown in the analysis
of the asymmetric model. We generally argue, from the derivation of our results, thatĝn for
evenn is intrinsicallys-dependent and thatĝn for oddn consists of both thes-dependent and
s-independent terms.

3. Vicinal-surface free energy forT < TR

Below the roughening temperatureTR, the ECS consists of both facets (flat faces) and a rounded
surface. Choose the Cartesian coordinates(X, Y, Z) with theZ-direction being facet normal
and give the ECS at a temperatureT by an equationZ = Z( ER) = Z(X, Y ). The surface
free energy per projected(X, Y )-area is given byf ( Ep) = γ ( Ep)

√
1 + Ep2, whereγ ( Ep) is the

surface tension, andEp is the surface gradient vector:Ep = (pX, pY ) = (∂Z/∂X, ∂Z/∂Y ).
Andreev [22] showed that the ECS is given by the equation

Z = 1

λ
f̃ (−λ ER) (33)
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Figure 2. Top view of a facet.θ is the direction angle of the tangential
line along the facet contour. ‘Atomic scale’ view of a vicinal surface as
an assembly of wandering steps is also shown. The angleθ corresponds
to the mean running direction of the steps.

where the the Legendre transformed free energyf̃ (Eη) is defined by

f̃ (Eη) = f ( Ep)− Eη · Ep (34)

with Eη = ∂f ( Ep)/∂ Ep the surface tilting ‘field’ conjugate toEp. (We consider the ‘normalized’
ECS when we setλ = 1.) Thus the calculation of the Andreev free energyf̃ (Eη) directly
determines the ECS.

A rounded surface with small gradient near the facet edge is the vicinal surface. The
vicinal surface is suitably described by the terrace–step-kink (TSK) picture where a surface
is regarded to be composed of terraces (flat areas) connected by non-crossing steps (linear
objects). Properties of the vicinal surface at temperaturesT < TR is determined by the small-
| Ep| behaviour of the free energyf ( Ep). For systems with short-range step–step interactions
the GMPT-type expansion [13, 14] of the surface free energy (= step free energy in the TSK
picture) has been known

f ( Ep) = f (0) + γs(θ)| Ep| +B(θ)| Ep|3 + O(| Ep|4) (35)

whereγs(θ) is the step tension. We take account the anisotropy of a crystal with the angleθ ,
defined byEp = | Ep|(− cosθ,− sinθ). The variableθ measures the angle between theY -axis
(crystal axis) and the mean running direction of steps, and is also the direction angle of the
tangential line along the facet contour (figure 2). In association with the expansion (35), the
universal relation between the coefficientsγs(θ) andB(θ) is known in the coarse-grained TSK
picture [19],

B(θ) = π2

6β2γ̃s(θ)
(36)

whereγ̃s(θ) = γs(θ) + ∂2γs(θ)/∂θ
2 is the step stiffness. We will verify (35) and (36) by an

exact calculation for a microscopic surface model associated with theN -state vertex model.
The solid-on-solid (SOS) model is a microscopic model for crystal surfaces, excluding

overhangs and voids (the SOS condition). The shape of a surface is described by the heights
at each site on the square lattice. As a generalization of [10], we can consider a certain SOS
model which is exactly mapped onto theN -state vertex model [5]. The vertex model is defined
on the dual lattice of that of the SOS model. The mapping is depicted in figure 3. In our case the
N(= 2s + 1) values of differences{−s,−s + 1, . . . , s−1, s} are allowed between the nearest-
neighbour heights (integers or half-odd integers, depending onN ) of the surface. The vertical
and horizontal polarizations(p, q), and the vertical and horizontal electric fields(v, h) of the
vertex model correspond to the surface gradients(pX, pY ) and to the surface tilting ‘fields’
(ηX, ηY ) of the SOS model, respectively. Then, knowledge of the free energy as a functionv
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Figure 3. Correspondence between the vertex model
(solid lines) and the SOS model (dotted lines). A single
vertex is indicated by the thick line. The Boltzmann
weight W(a, b, c, d) for a (local) hight configuration
{a, b, c, d} in the SOS model is identified with the
Boltzmann weightXa−b b−da−c c−d (u) of the corresponding

vertex configuration asW(a, b, c, d) = Xa−b b−da−c c−d (u).

Figure 4. Example of facet contour(vc, hc) in the(v, h)-
plane. Inside the contour the free energy is constant as a
function of fields (facet is formed).

andh enables us to determine the ECS via (33). We rewrite (24) as

−βf̂ (p, h) ≡ ĝ(p, h) = ĝ(0, h) + γ̂ (h)p + B̂(h)p3 + O(p4). (37)

In what follows we perform our explicit calculations on the free energyf̂ (p, h), or ĝ(p, h),
instead of the Andreev free energyg̃(v, h), which is given by the Legendre transformation

g̃(v, h) = ĝ(p, h)− vp (38)

where

v = ∂ĝ(p, h)

∂p

∣∣∣∣
h

(39)

which describes the ECS. Hence the calculation of the field-dependent free energyĝ(p, h)

leads to the ECS at any point on a crystal surface. It then follows that theh-dependent free
energyf̂ (p, h) is equivalent to theθ -dependent free energy (35). Forp = 0, in fact, equation
(39) reads

vc = γ̂ (hc). (40)

This is the equation which determine the (2D) facet contour(vc, hc) from the field-dependent
(one-dimension) surface tensionγ̂ (h) [26]. An example of facet contour in the(v, h)-plane is
given in figure 4. The parametric equation(vc(b), hc(b)) is identical with that in the six vertex
model case and is given in [4,7].

The relation between the coefficients (29) now reads

B̂(h̃) = − π
2

6β2
· γ̂ ′′(h) (41)

which is equivalent to (36) and is crucial in verifying the universal properties.
The ‘normalized’ Gaussian curvature [25], a product of two principal curvaturesKX ≈

∂2Z/∂X2 andKY ≈ ∂2Z/∂Y 2, is now calculated to be [9]

K̂ = −
1 +p2 +

(
∂f̂ (p, h)

∂h

)2

−2(

∂2f̂ (p, h)

∂h2

/
∂2f̂ (p, h)

∂p2

) ∣∣∣∣∣
Ẑ=f̂ (−v,−h)

(42)
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in terms off̂ (p, h). Substituting (37) into (42) and taking the limitp → 0, we obtain the
limiting value ofK approached from the curved region,

K̂ = − γ̂
′′(h)

6B̂(h)
. (43)

From (41) and (43) we conclude that the Gaussian curvature takes the values,

K̂ =
{
(β/π)2 at the facet edge

0 on a facet
(44)

irrespective of the field. We have then verified the universal Gaussian curvature jump√
1K̂/β = 1/π [19,20]at any pointon the facet edge for our generalized SOS model.

The rounding off of a crystal facet is governed by the critical exponent with respect to
displacement(1v,1h) from the facet edge(vc, hc). The well known universal exponent
3
2 of the ECS near the facet edge is shown for the BCSOS model in a ‘normal’ direction
(perpendicular to the facet contour), orh = 0 direction as [6,11]

ĝ(vc +1v, hc)− ĝ(vc, hc) ∼ (1v)3/2. (45)

This exponent has been confirmed experimentally [17]. Recently, it is shown that in the
tangential direction along the facet contour a different critical exponent 3 dominates instead
of 3

2 [16,18].
As the vicinal-surface free energy forT < TR is already obtained, the calculation of

critical exponents is straightforward. We derive the values of universal critical exponents as
well as the critical amplitudes of the ECS profiles near the facet edgeat any positionof the
facet edge andin all direction as follows.

Expanding (39) with respect to1h andp (1h� 1 andp � 1) gives

v = vc +1v

= γ̂ (hc) + γ̂ ′(hc)1h + 1
2 γ̂
′′(hc)(1h)2 + 3B̂(hc)p

2. (46)

The deviation of the free energy1ĝ(v, h) ≡ ĝ(vc +1v, hc +1h)− ĝ(vc, hc) is expanded to
be

1ĝ(v, h) = −(vc +1v)p + (γ̂ (hc) + γ̂ ′(hc)1h + 1
2 γ̂
′′(hc)(1h)2)p + B̂(hc)p

3

= (−1v + γ̂ ′(hc)1h + 1
2 γ̂
′′(hc)(1h)2)p + B̂(hc)p

3. (47)

In a general direction of displacement(1v,1h) away from the facet edge(vc, hc), we have
from (46) (neglecting the(1h)2 term)

p = 1√
3B̂(hc)

(1v − γ̂ ′(hc)1h)1/2 (48)

giving, from (47),

1ĝ(v, h) = − 2

3
√
B̂(hc)

(1v − γ̂ ′(hc)1h)3/2

≡ An(hc)(1v − γ̂ ′(hc)1h)3/2 (49)

with the well known exponent32 for a ‘normal’ profile.
On the tangential line:1v = γ̂ ′(hc)1h (‘tangential’ means that∂v/∂h = γ̂ ′(hc) at the

facet edge, which is read off from (39)), (49) vanish and the rounding has a different critical
exponent. In this case (46) gives

p =
√
− γ̂

′′(hc)

6B̂(hc)
·1h (50)
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for which (47) results in

1ĝ(v, h) = γ̂ ′′(hc)
3

√
− γ̂

′′(hc)

6B̂(hc)
(1h)3

≡ At(hc)(1h)3 (51)

with the exponent 3 for the ‘tangential’ profile. These shows that the critical exponents which
govern the rounding of the facet are obtained at any position of the facet edge and in all
direction. We have, in addition, a universal relation between the critical amplitudesAn(hc)

andAt(hc) of the ECS profiles near the facet edge. From (49) and (51) with the help of (41)
we have

[A2
n(hc)At (hc)]

1/3 = 2β

3π
(52)

which is constant along the facet contour, in connection with the Gaussian curvature jump
(44). We should note that the results obtained here are direct consequences of the GMPT-type
expansion of the vicinal-surface free energy forT < TR and are thus universal [16].

4. Summary

We have obtained the exact expansion with respect to small polarizationp of the electric-field-
dependent free energy of the asymmetricN -state vertex model (in an arbitrary vertical electric
field v and an arbitrary horizontal electric fieldh) in the low-temperature antiferroelectric
phase. As a generalization of the work of van Beijeren on the six-vertex model, we have
mapped the vertex model onto a microscopic surface model (SOS model) to study exactly the
vicinal-surface free energy below the roughening temperature which governs properties of the
ECS near the facet edge of a crystal.

We have obtained the expansion of the well-established GMPT type:f (p, h) =
f (0, h)+a(h)p+b(h)p3+O(p4), where the coefficientsa(h) andb(h) are identical with those
of the asymmetric six vertex model. The field-dependent free energy directly gives the ECS
via the Andreev construction. We have verified, based on the obtained expansion of the free
energy, universal propertiesalong the whole facet contour. First, directly from the GMPT-type
expansion, we have obtained the critical exponents which govern the rounding off of the crystal
facet; the well known exponent3

2 dominates in all directionexceptthe tangential one in which
case the exponent 3 is dominating. Second, we have verified the universal relation between
the coefficientsa(h) andb(h) which leads to the universal Gaussian curvature jump and the
universal relation between the critical amplitudes of the ECS profiles near the facet edge.
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Carmi Y, Lipson S G and Polturak E 1987Phys. Rev.B 361894
Rolly E, Chevalier E, Guthmann C and Balibar S 1994Phys. Rev. Lett.72872

[18] Dahmen S R, Wehefritz B and Albertini G 1998 A novel exponent in the equilibrium shape of crystalsPreprint
cond-mat/9802152

[19] Akutsu Y, Akutsu N and Yamamoto T 1988Phys. Rev. Lett.61424
Yamamoto T, Akutsu Y and Akutsu N 1988J. Phys. Soc. Japan57453

[20] Mikheev L V and Pokrovsky V L 1991J. Physique1 373
[21] Noh J D and Kim D 1996Phys. Rev.E 533225

Noh J D and Kim D 1997Phys. Rev.E 56355
[22] Andreev A F 1981Zh. Eksp. Theor. Fiz.802042

Andreev A F 1982Sov. Phys.–JETP531063
[23] Faddeev L D 1981Sov. Sci. Rev. Math. Phys.C1 107
[24] Babujian H M and Tsvelick A M 1986Nucl. Phys.B 26524
[25] Akutsu N and Akutsu Y 1987J. Phys. Soc. Japan561443
[26] Akutsu N and Akutsu Y 1987J. Phys. Soc. Japan562248

Holzer M and Wortis M 1989Phys. Rev.B 4011 044


