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Abstract. Electric-field-dependent free energy of the exactly solvable asymmétsiate vertex
model (i.e. in an arbitrary vertical and an arbitrary horizontal electric fiedohd 2) in the low-
temperature antiferroelectric phase is obtained in the form of the expansion in terms of small but
nonzero polarizatiop. Exact mapping onto a microscopic surface model (solid-on-solid (SOS)
model) is employed to study the vicinal-surface free energy below the roughening temp&gature
which determines the equilibrium crystal shape (ECS) near the facet edge of a crystal.

The obtained expansion of the free energy is of the well-established Gruber—Mullins—
Pokrovsky—Talapov (GMPT) typef (p, h) = f(0, h) +a(h) p + b(h) p® + O(p*). Itis found that
the coefficients:(h) andb(h) are identical with those of the asymmetric six-vertex model. Based
on this expansion, in cooperation with the Andreev construction of the ECS, universal properties
are verifiedalong the whole facet contourFirst, directly from the GMPT-type expansion, the
critical exponents governing the rounding of the crystal facet are obtained; the expogle'zmtaild;
directionexceptthe tangential one in which case it is 3. Second, the universal relation between
a(h) andb(h) is verified, leading to the universal Gaussian curvature jump at the facet edge and a
universal relation between the critical amplitudes of the ECS profiles of the vicinal surface.

1. Introduction

Exact solution of the two-dimensional (2D) classical statistical systems has a long history [1,2].
Most of the solutions concern 2D models without an external electric field. Exact solvability
of models in an electric field is not a trivial problem. In 1967 Yang [3] and Suthedaat4]
solved a general six-vertex model (called the asymmetric six-vertex model) when arbitrary
horizontal and vertical electric fields,andv, are present. They obtained the phase diagram
as well as the exact expression of the free energy for zero polarization. Later, the solvability
condition (a commutation relation: the Yang—Baxter relation) between the transfer matrices
of the asymmetrigv-state vertex model has been found [5]. In this paper we obtain the exact
expansion of the free energy of the asymmenfistate vertex model in the low-temperature
antiferroelectric phase for small polarization as a generalization of previous works [6-9].
Comparison among these works and the present one is listed in table 1. Asymmetric models
should be used to study the properties of models in an arbitrary direction. Expanding the
free energy up to the third order gives the small-polarization properties of the vertex models.
This calculation for the asymmetric model was first done in [9]. ([7] refers to the expansion
up to the first order.) We verify that the same universal properties hold for the asymmetric
N-state vertex model as those for the asymmetric six-vertex model [9]. We further find that
the higher-order terms of the expansion exhibit a non-universal property.

Among applications of 2D classical statistical systems is analysis of the equilibrium crystal
shape (ECS). As a pioneering work of exact analysis of the ECS, van Beijeren [10] mapped the
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Table 1. List of the works on expansion of the free energy of vertex models for nonzero polarization.

Six-vertex (two-state vertex) model N-state vertex model

Symmetric [6] [8,12]
Asymmetric  [7,9] this work

six vertex model onto the microscopic surface model (body-centred solid-on-solid (BCSOS)
model) to discuss the roughening transition exactly. By virtue of this correspondence the
asymmetric six vertex model has played a major role in studying properties of the roughening
transition atT; as well as the thermal evolution of facet shapes of a crystal for temperatures
T < Tg[7,10,11]. Exact mapping onto a surface model is also possible fav tbtate vertex
model [5]. We perform this mapping to study the surface free energy of the corresponding
generalized SOS model exactly.

Below the roughening temperatufg, the ECS near the facet edge is viewed as a vicinal
surface (i.e. a crystal surface with small average gradient). It was believed that the vicinal
surface foIT < Tx belongs to the Gruber—Mullins—Pokrovsky—Talapov (GMPT) universality
class [13] and that the vicinal-surface free enefgy) as a function of surface gradiept
(~polarization of the vertex model) takes the well-established form of the expansion [13, 14],
f(p) = f(O)+ap+bp3+0(p*), which determines the ECS near the facet edge of a crystal via
the Wulff construction [15]. Some universal properties are associated with this vicinal-surface
free energy. The rounding off of a crystal facet is governed by two kinds of the universal critical
exponents and 3[16,18]; the ECS behaveszs- (AX)*2in a‘normal’ direction [6,11,17]
and asZ ~ (AY)? in the tangential direction [18]. (We have chosen #hexis to be facet
normal, andA X to be the ‘normal’ distance (perpendicular to the facet contour).) The universal
relation holds between the coefficientandb [19]. This leads to the universal relation between
the critical amplitudes of the normal and the tangential ECS profile near the facet edge [16],
and also to the universal Gaussian curvature jump at the facet edge [9, 19, 20], which thus has
a different physical origin [21] from that of the universal curvature jumpgafl1].

Andreev [22] showed that the surface free energy as a function of fields directly gives the
ECS. Inthis paper we verify the GMPT-type expansion as well as the universal properties along
the whole facet contour, based on the field-dependent vicinal-surface free gi{grgy) of
our SOS model. The expansion ffp, i) up to the third order i%v-independent, as is stated
above. The result is of special interest since another calculation on this SOS model shows that
the curvature jump &fy is N-dependent [12].

2. Free energy of the asymmetridV-state vertex model

The exactly-solvableV-state vertex model (spin-model) is an extension of the six vertex
model [5]. The edge valuables of a vertex take any ong-of,...,s} (N = 25 + 1)

under the ‘charge conservation’ condition (figure 1). In this paper we concentrate on the
low-temperature antiferroelectric phase (hyperbolic regime for the Boltzmann weights). We
employ the Boltzmann weights with the normalizati®fi («) = ]_[f\’z’ll sinh(IA — u) and with

the crossing symmetryg A—u) = X,:"jl (u). Introducing a certain gauge transformation [5],
we can construct the Boltzmann weigfﬁéﬁ(u) of the asymmetric model (in a horizontal
electric fieldk) from those of the symmetric on€); (u):
Xiw) = HID2Xw)  H = exp2ph) (1)
itj=k+l i, j k==s,...,5. )
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Figure 1. The Boltzmann Weighx,';fl' (#). The nonvanishing weights are allowed for
l the vertex configuration under the ‘charge conservation’ conditionf = k + 1.

We should note that the Boltzmann weightd)(«) themselves do not satisfy the
factorization (Yang—Baxter) equation, but that there exists a commutation relation associated
with the transfer matrices of the model which ensure the solvability of the asymmetric model.

Diagonalization of the transfer matrix of the asymmetyiestate vertex model is worked
out by using the algebraic Bethe ansatz method [23, 24]. The resulting Bethe ansatz equation
is

explip,L) = H* [ [expi®(pj, p)) 1< j<n €)
=1
where
. eZv)L _ e—iat
er = e2i—ia _ 1 4)
a—p
O(pj, p) = 2arctar{cothx tan( 3 )} ) (5)

In the thermodynamic limit we write the Bethe ansatz integral equation for the continuous root
densityR(«):

R(@) + fc K(@ - ARP)dB = E(@)

(6)

P y) = / R() dp

C

where
2 sinh(2k — 1)

S(a)zkz:;cosf'(Zk—l))‘_cosa "

sinh 42 3~ sinhZa
K@ = Cosnar —cosa " 22 cosh T — cosa ©

The phase shift functio®(x) and the kernelk (x) are related to each other &(x) =
do (x)/dx, and the vertical polarizationis defined by
2s° L—2
y= lim 2= = jim " 9)

L—oco L L—o00 L

The parametex scales the temperature. The integration gath, unlike the symmetric case,
shifted from the real axis to the interval [4, 7]

C:l—a+ib,a+ib]. (10)
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Note thata andb depend implicitly on the two variablesandh, and vice versa. In terms of
the new variablee = o — ib (v = B — ib), the equations (6) are rewritten Qa(y, h) < 7)

R(u,b) + /a K@ —v)R(,b)dv =&(u, b)
4 (12)
n(l—y):/ R(u, b)du

with the normalization
p°a, b) — / 6(a — v)R(v, b)dv = %[1 —y(a,b)] —ilnH(@a,b)  (12)

where p°(a, b) is a (complex) wavenumber. Once the solut®@x) is known, the per-site
field-dependent free energy as a function of vertical polarizatfemn, &), is given by

—Bf(y,h)y =gk, h)

— _%|nH+|n)2§§(u)+%/_z @ (u, b)R(u, b) du (13)
with (9 = A +¢o — b, ¢pg <b < L)
O (u, b) = i o, (b)em™ (14)
q> ) _ZO:(A + iu) h N n=0) 15
where the parameter is defined by
e — t:f;” 0< go < i (16)

For small vertical polarizatiom we obtain the free energy in its expansion form in terms
of y:

( ) V. 17)

gﬂ
g(y.h) =g(0.h)+ Z
Calculations can be performed in a similar way to that of Lieb and Wu [6], but the asymmetry
of the Boltzmann weights makes the analysis rather complicated although straightforward. To
obtain the expansion (17), we need the derivatives of various quantities with respeat to
y = 0. Define

3 R(u, b)

RY(u,b) = A
ay’

(18)

h:fixed,y=0
We denote the partial derivatives of a functiénwith respect ta at y = 0 by F,, F,;, and
so0 on. R (u, b) andR'” (u, b) have been obtained in [7]. We expand (11) in terms ahd
obtainRY (u, b)'s recursively. After some calculations, we obtain

RP(u,b) = RP(u) = RS, (1)
R®(u, b) = R (u, b)by, (19)
R®(u,b) = R, (u, b) + 2IRD (u) by, + R (1, b)byy,
where the gquantities with subscriptm stands for those for the symmetric case which are
given in [8]. Note that the solutions (19) are of the same form of the functional relations as
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those in theV = 2 case (six-vertex model), but are actuallydependent. In the derivation
of (19) we have used the following relationsyat= 0 (¢ = 7) which are derived through (11)
and (12):

N o0 _1}'! hb
Hzlnszﬁhz_b_zz( )* sinhbn

“~ n coshn
. . . RY ()
H,=0 Hy, = 4SR1(,O> (r, b) Hyuo = ) Huq
ST

. 20

Y 0
H™" 2RO (x, b) HH g, H
i L

b)v =0 by}' = —HTbHaa byyy = m(?‘)Haaayayy + Haaaay).

Noting thatb,, = b,,, = 0 forh = 0 (b = 0), we observe in (19) thaR"”)(u, b) (j < 3)
reduce to the results for the symmetric model [8].

Substituting the solutions (19) into (13), after a lengthy calculation using (20), we obtain
the expansion (17). It is convenient to scale the polarizationsby 2

(@) = 25y, 25x)  fO. ) = f(p. 1) (21)
(x is the horizontal polarization) in association with the Legendre transformafign ¢) =
f(p/2s,q/29))

f(p.q)= f(p,h)+hq (22)
with
af(p, )
EECAVALCAN (23)
oh |,

We then finally have
—Bf(p,h)=§(p,h) =g(p/2s, h)
. > ga(h)
=40, h)+ X_; =D
= 2(0, h) + g1(h)p + £83(h) p°> + O(p™) (24)

with
g1(h) = —E(p)

om— | — T T grig s BomD) o (25)
g3(h) = [R<°>(n, b)} [u (®) RO by (w)}
where the functiorE (x) is defined by
E(x) = cosht [nd (K(k)x 1-— k)] =0 (26)
v

where K (k) denotes the complete elliptic integral of the first kind with modwuand nd
is the Jacobi elliptic function. The result verifies the GMPT-type expansion withoytthe
term [13, 14] for the asymmetri&y/-state vertex model. We further derive a simple relation
betweeng;(h) andgs(h) as follows. Since
2
72 E@) = E"@)B1)* = E'(@)bm)
Ry (7, b)

= |70 e

E/(q))} (bn)? (27)
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with
___ B
b=~ Ro B (28)
we obtain
A 77”2 Al
g3(h) = 5 - g1 (h). (29)

We find, as for the expansion up to the third order, that the results (24) and (29)-are
independent and are given in [9]. This is understood from the fact thavthete vertex
model is a special case of th&-invariant’ inhomogeneous six vertex model with suitable
boundary conditions [2,8]. The present calculation shows that this property holds when an
arbitrary electric field is present.

We carry out a further calculation of the expansion to obtain higher-order terms than the
third one. In what follows in this section only we deal with the symmeittistate model for
simplicity. The Bethe ansatz integral equation is given in [8] and can be obtained by letting
b =0 (i.e.h = 0) in (13) (withgy = —2Au). The free energg(p, h) in (24) is now a
function only of p (andu). A calculation up to the fifth order gives

A a 167° o
84 =g4(0) = _R(T(nﬁqj(s)d (A — 2Au) (30)
o = 550 = 2297 e mon— 28w+ | T
85—85()—R(0)—(ﬂ)4 ($HE (A — u) R(T(JT)
4RO () _, &
where the functiord (s) is defined by
00 eZsAn

We find that thep* term does not vanish, whereas preterms do. This distinguishes the
model from the free fermion model. Recalling that the higher-order terms of the free energy
reflect contributions due to the higher-order (high-energy) processes of the interaction between
the multi-valued variables (multipoles) (or, steps in the TSK picture (see section 3)), the result
shows that the difference between ftiestate vertex model and the free fermion model appears
in the forth and higher orders of the free energy. We also remarléjtaidgs are definitely
s-dependentvhile the coefficientg, for n < 3 ares-independent, as is shown in the analysis
of the asymmetric model. We generally argue, from the derivation of our resultg, that
evenn is intrinsically s-dependent and thgt, for oddn consists of both the-dependent and
s-independent terms.

3. Vicinal-surface free energy forT' < Tg

Below the roughening temperatufg, the ECS consists of both facets (flat faces) and arounded
surface. Choose the Cartesian coordinaesy, Z) with the Z:direction being facet normal
and give the ECS at a temperatufeby an equatiorZ = Z(R) = Z(X,Y). The surface
free energy per projected, Y)-area is given byf (p) = y(p)/1 + p2, wherey (p) is the
surface tension, and is the surface gradient vectoi = (px, py) = (0Z/3X,3Z/3Y).
Andreev [22] showed that the ECS is given by the equation

Z= %f(—m’) (33)
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| > X
‘ Facet 'i}
1 Figure 2. Top view of a facetd is the direction angle of the tangential
|
I
1

0 line along the facet contour. ‘Atomic scale’ view of a vicinal surface as
an assembly of wandering steps is also shown. The @rggleresponds
to the mean running direction of the steps.

where the the Legendre transformed free engtgj) is defined by

fa=fp —n-p (34)
with 77 = 3f(p)/dp the surface tilting ‘field’ conjugate tp. (We consider the ‘normalized’
ECS when we set = 1.) Thus the calculation of the Andreev free enerfyy) directly
determines the ECS.

A rounded surface with small gradient near the facet edge is the vicinal surface. The
vicinal surface is suitably described by the terrace—step-kink (TSK) picture where a surface
is regarded to be composed of terraces (flat areas) connected by non-crossing steps (linear
objects). Properties of the vicinal surface at temperatfiresTy is determined by the small-
|p| behaviour of the free energg(p). For systems with short-range step—step interactions

the GMPT-type expansion [13, 14] of the surface free energy (= step free energy in the TSK
picture) has been known

F(B) = fO) +y,0)|p| +BO)|pI+0O(p* (35)

wherey; () is the step tension. We take account the anisotropy of a crystal with the@ngle
defined byp = |p|(— cosh, — sind). The variable measures the angle between haxis
(crystal axis) and the mean running direction of steps, and is also the direction angle of the
tangential line along the facet contour (figure 2). In association with the expansion (35), the
universal relation between the coefficieptéd) andB(9) is known in the coarse-grained TSK
picture [19],

JT2

~ 6627,(0)

wherey, () = y,(0) + 3%y,(9)/36? is the step stiffness. We will verify (35) and (36) by an
exact calculation for a microscopic surface model associated witN tbiate vertex model.

The solid-on-solid (SOS) model is a microscopic model for crystal surfaces, excluding
overhangs and voids (the SOS condition). The shape of a surface is described by the heights
at each site on the square lattice. As a generalization of [10], we can consider a certain SOS
model which is exactly mapped onto tNestate vertex model [5]. The vertex model is defined
onthe dual lattice of that of the SOS model. The mapping is depicted in figure 3. In our case the
N (= 2s +1) values of differenceg—s, —s + 1, ..., s — 1, s} are allowed between the nearest-
neighbour heights (integers or half-odd integers, depending)af the surface. The vertical
and horizontal polarization, ¢), and the vertical and horizontal electric fields ) of the
vertex model correspond to the surface gradiépts, py) and to the surface tilting ‘fields’

(nx, ny) of the SOS model, respectively. Then, knowledge of the free energy as a function

B(0) (36)
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\(\Vc,hc)

\ 4
<

Figure 3. Correspondence between the vertex moddtigure 4. Example of facet contouw,, 4.) inthe(v, h)-
(solid lines) and the SOS model (dotted lines). A singlelane. Inside the contour the free energy is constant as a
vertex is indicated by the thick line. The Boltzmannfunction of fields (facet is formed).

weight W(a, b, ¢, d) for a (local) hight configuration

{a,b,c,d} in the SOS model is identified with the

Boltzmann weightX“~?=4(4) of the corresponding

vertex configuration a¥ (a, b, ¢, d) = XZ:ﬁ’ f__j(u)-

andh enables us to determine the ECS via (33). We rewrite (24) as

—Bf(p, h) = &(p, h) = §(0, h) + (W) p + B(h) p* + O(p*). (37)
In what follows we perform our explicit calculations on the free enefgy, h), org(p, h),
instead of the Andreev free energy, k), which is given by the Legendre transformation

g, h) =g(p,h) —vp (38)
where
_38(p. )
V= ——
ap h
which describes the ECS. Hence the calculation of the field-dependent free giiprdy
leads to the ECS at any point on a crystal surface. It then follows thdt-tlependent free

energyf (p, h) is equivalent to the-dependent free energy (35). Fore= 0, in fact, equation
(39) reads

(39)

ve = ¥ (he). (40)
This is the equation which determine the (2D) facet contours,.) from the field-dependent
(one-dimension) surface tensigiiz) [26]. An example of facet contour in the, h)-plane is
given in figure 4. The parametric equati@n(b), k(b)) is identical with that in the six vertex
model case and is given in [4,7].
The relation between the coefficients (29) now reads
A~ nz
B(h) = o5
which is equivalent to (36) and is crucial in verifying the universal properties.
The ‘normalized’ Gaussian curvature [25], a product of two principal curvatkires:
927Z/3X? andKy ~ 9°Z/dY?, is now calculated to be [9]

R 2] 2 R R
oo 2, [(3f(p,h) %f(p.h) [9%f(p.h)
K==qtrre ( oh ) ( e / ap?

7" (h) (41)

(42)

Z=f(~v,~h)
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in terms of £(p, k). Substituting (37) into (42) and taking the limit — 0, we obtain the
limiting value of K approached from the curved region,

“ ov/4 /’l
g=_r® (43)
6B (h)
From (41) and (43) we conclude that the Gaussian curvature takes the values,
N 2 t the facet ed
F (B/m) at the facet edge (a4)

0 on a facet

irrespective of the field. We have then verified the universal Gaussian curvature jump
VvV AK /B = 1/ [19,20]at any pointon the facet edge for our generalized SOS model.

The rounding off of a crystal facet is governed by the critical exponent with respect to
displacement{Av, Ah) from the facet edg€v., h.). The well known universal exponent
% of the ECS near the facet edge is shown for the BCSOS model in a ‘normal’ direction
(perpendicular to the facet contour),/oe= O direction as [6,11]

§(ve + Av, he) = §(ve, he) ~ (Av)*2. (45)

This exponent has been confirmed experimentally [17]. Recently, it is shown that in the
tangential direction along the facet contour a different critical exponent 3 dominates instead
of 3 [16,18].

As the vicinal-surface free energy f@r < Ty is already obtained, the calculation of
critical exponents is straightforward. We derive the values of universal critical exponents as
well as the critical amplitudes of the ECS profiles near the facet atigay positionof the
facet edge anth all direction as follows.

Expanding (39) with respect thz andp (Ah <« 1 andp « 1) gives

v=1v,+Av
= P(he) + 7' (he) Al + 39" (he) (AR)? + 3B (h,) p°. (46)

The deviation of the free energyg(v, h) = g(v. + Av, h. + Ah) — g(v., h.) is expanded to
be
A, h) = —(v. + Av)p + (P (he) + 7' (he) Ah + %J?"(hc)(Ah)z)p +B(he)p®

= (—Av +7'(h) Al + 39" (h) (AP p + B(he) p. (47)
In a general direction of displacememtv, Ak) away from the facet edge., h.), we have
from (46) (neglecting theAh)? term)

1
. v 3B(h)

giving, from (47),

(Av — P/ (he) AR)Y? (48)

2
Ag(v, h) = ————(Av — P'(h) Ah)¥?
3,/ B(h,)
= Ay (h)(Av — P/ (h) AR)¥? (49)

with the well known exponeré for a ‘normal’ profile.

On the tangential lineAv = p'(h.)Ah (‘tangential’ means thadv/0h = y’(h.) at the
facet edge, which is read off from (39)), (49) vanish and the rounding has a different critical
exponent. In this case (46) gives

" (he)
= [~ Ah 50
P 6B (h.) (0)




5608 R Sato and Y Akutsu

for which (47) results in

Ag(w, by = L ;h“) /_g;((;’l“))mhﬁ

= A,(h.)(Ah)® (51)

with the exponent 3 for the ‘tangential’ profile. These shows that the critical exponents which
govern the rounding of the facet are obtained at any position of the facet edge and in all
direction. We have, in addition, a universal relation between the critical amplittigiés)
and A, (h.) of the ECS profiles near the facet edge. From (49) and (51) with the help of (41)
we have

2
[A2(h) A, () = 22 (52)
3T
which is constant along the facet contour, in connection with the Gaussian curvature jump
(44). We should note that the results obtained here are direct consequences of the GMPT-type

expansion of the vicinal-surface free energy fox Tk and are thus universal [16].

4. Summary

We have obtained the exact expansion with respect to small polarizatibiie electric-field-
dependent free energy of the asymmetistate vertex model (in an arbitrary vertical electric
field v and an arbitrary horizontal electric fielg in the low-temperature antiferroelectric
phase. As a generalization of the work of van Beijeren on the six-vertex model, we have
mapped the vertex model onto a microscopic surface model (SOS model) to study exactly the
vicinal-surface free energy below the roughening temperature which governs properties of the
ECS near the facet edge of a crystal.

We have obtained the expansion of the well-established GMPT typep, h) =
(0, h)+a(h)p+b(h) p2+0O(p*), where the coefficients(h) andb (i) are identical with those
of the asymmetric six vertex model. The field-dependent free energy directly gives the ECS
via the Andreev construction. We have verified, based on the obtained expansion of the free
energy, universal propertiatong the whole facet contouFirst, directly from the GMPT-type
expansion, we have obtained the critical exponents which govern the rounding off of the crystal
facet; the well known exponeétdominates in all directioexcepthe tangential one in which
case the exponent 3 is dominating. Second, we have verified the universal relation between
the coefficients: (k) andb (k) which leads to the universal Gaussian curvature jump and the
universal relation between the critical amplitudes of the ECS profiles near the facet edge.
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